Renal substrate exchange and gluconeogenesis in normal postabsorptive humans.

نویسندگان

  • Christian Meyer
  • Michael Stumvoll
  • Jean Dostou
  • Stephen Welle
  • Morey Haymond
  • John Gerich
چکیده

Release of glucose by the kidney in postabsorptive normal humans is generally regarded as being wholly due to gluconeogenesis. Although lactate is the most important systemic gluconeogenic precursor and there is appreciable net renal lactate uptake, renal lactate gluconeogenesis has not yet been investigated. The present studies were therefore undertaken to quantitate the contribution of lactate to renal gluconeogenesis and the role of the kidney in lactate metabolism. We determined systemic and renal lactate conversion to glucose as well as renal lactate net balance, fractional extraction, uptake, and release in 24 postabsorptive humans by use of a combination of isotopic and renal balance techniques. For comparative purposes, accumulated similar data for glutamine, alanine, and glycerol are also reported. Systemic lactate gluconeogenesis (1.97 +/- 0.12 micromol x kg(-1) x min(-1)) was about threefold greater than that from glycerol, glutamine, and alanine. The sum of gluconeogenesis from these precursors, uncorrected for tricarboxylic acid (TCA) cycle carbon exchange, explained 34% of systemic glucose release. Renal lactate uptake (3.33 +/- 0.28 micromol x kg(-1) x min(-1)) accounted for nearly 30% of its systemic turnover. Renal gluconeogenesis from lactate (0.78 +/- 0.10 micromol x kg(-1) x min(-1)) was 3.5, 2.5, and 9.6-fold greater than that from glycerol, glutamine, and alanine. The sum of renal gluconeogenesis from these precursors equaled approximately 40% of the sum of their systemic gluconeogenesis. When the isotopically determined rates of systemic and renal gluconeogenesis were corrected for TCA cycle carbon exchange, gluconeogenesis from these precursors accounted for 43% of systemic glucose release and 89% of renal glucose release. We conclude that 1) in postabsorptive normal humans, lactate is the dominant precursor for both renal and systemic gluconeogenesis; 2) the kidney is an important organ for lactate disposal; 3) under these conditions, renal glucose release is predominantly, if not exclusively, due to gluconeogenesis; and 4) liver and kidney are similarly important for systemic gluconeogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity.

To assess the contribution of the human kidney to gluconeogenesis (GN) and its role in conversion of glutamine and alanine to glucose, we used a combination of isotopic and organ balance techniques in nine normal postabsorptive volunteers and measured both overall and renal incorporation of these precursors into glucose before and after infusion of epinephrine. In the postabsorptive basal state...

متن کامل

Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism.

To determine the effect of physiological hyperinsulinemia on renal and hepatic substrate metabolism, we assessed systemic and renal glucose release and uptake, systemic and renal gluconeogenesis from glutamine, and certain aspects of systemic and renal glutamine and free fatty acid (FFA) metabolism. These were assessed under basal postabsorptive conditions and during 4-h hyperinsulinemic euglyc...

متن کامل

Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans.

To examine the potential contribution of precursor substrates to renal gluconeogenesis during hypoglycemia, 14 healthy subjects had arterialized hand vein and renal vein (under fluoroscopy) catheterized after an overnight fast. Net renal balance of lactate, glycerol, alanine, and glutamine was determined simultaneously with systemic and renal glucose kinetics using arteriovenous concentration d...

متن کامل

Gluconeogenesis from glutamine and lactate in the isolated human renal proximal tubule: longitudinal heterogeneity and lack of response to adrenaline.

Recent studies in vivo have suggested that, in humans in the postabsorptive state, the kidneys contribute a significant fraction of systemic gluconeogenesis, and that the stimulation of renal gluconeogenesis may fully explain the increase in systemic gluconeogenesis during adrenaline infusion. Given the potential importance of human renal gluconeogenesis in various physiological and pathophysio...

متن کامل

Relative importance of liver, kidney, and substrates in epinephrine-induced increased gluconeogenesis in humans.

Splanchnic and renal net balance measurements indicate that lactate and glycerol may be important precursors for epinephrine-stimulated gluconeogenesis (GNG) in liver and kidney, but the effects of epinephrine on their renal and hepatic conversion to glucose in humans have not yet been reported. We therefore used a combination of renal balance and isotopic techniques in nine postabsorptive volu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 2002